BeNano 180 Zeta Pro
The BeNano Series is the latest generation of nanoparticle size and zeta potential analyzers designed by Bettersize Instruments. Dynamic light scattering (DLS), electrophoretic light scattering (ELS), and static light scattering (SLS) are integrated into the system to provide accurate measurements of particle size, zeta potential, and molecular weight. The BeNano Series is widely applied in academic and manufacturing processes of various fields including but not limited to: chemical engineering, pharmaceuticals, food and beverage, inks and pigments, and life science, etc.
Features and Benefits
- ● Size range: 0.3nm - 15μm
- ● Minimum sample volume 3μL
- ● APD (Avalanche Photodiode) detector providing exceptional sensitivity
- ● Automatic adjustment of laser intensity
- ● Intelligent algorithm of result evaluation
- ● DLS backscattering (173°) detection technology
- ● User-adjustable scattering volume for concentrated samples
- ● PALS (Phase Analysis Light Scattering) technology
- ● Programmable temperature control system
- ● Compliance with 21 CFR Part 11, ISO 22412, ISO 13099
Video
BeNano 90 Zeta | Demo (Polystyrene Standard Sample) 
Fundamentals of BeNano 90 Zeta 
BeNano 90 Zeta | Nanoparticle size and zeta potential analyzer 
BeNano Series | Customer Perspective & Demo 
Understanding the DLS Backscattering Technology 
Book a Free Demo with Global Distributors 
BeNano 180 Zeta Pro | Demo (Polystyrene Latex Sample) 
BeNano 180 Zeta Pro | Nanoparticle size and zeta potential analyzer 
BeNano 180 Zeta Pro Launch Event | Nanoparticle size and zeta potential analyzer 
4 Questions Nanoparticle Researchers are Really Asking About 
Fundamentals of BeNano 180 Zeta Pro 
Fundamentals of BAT 1 Autotitrator 
Fundamentals of DLS Microrheology 
How to Measure Microrheological Properties of Liquids by BeNano? 
How to Operate BAT 1 Autotitrator to Measure Zeta Potential vs. pH 
Fundamentals of BeNano 180 Zeta Pro 
Overview
1) Unlock Greater Research Potential With BeNano
- Advanced ELS Technology: PALS
PALS technology can effectively distingguish and extract the electrophoretic behavior even for sample with weak eletrophoretic mobilities, either close to isoelectrical point or with high salinity environment.
- Advanced DLS Technology: Backscattering Detection
Backscattering DLS optics can detect much larger scattering volume compared to 90-degree optics. Combined with movable measurement position, backscattering DLS offers much higher sensitivity and high turbidity sample measurement capacity.
- Temperature Trend Measurement
For thermal sensitive samples, a temperature trend can be performed easily with a programmed SOP. The BeNano can detect the temperature transition point of the size results, which is the aggregation temperature for protein samples.
- Stable and Durable Optical Bench
The BeNano adopts a 50mW solid-state laser, a singlemode fiber system and a high-performance APD detector, providing stable, wide-ranging, and highly redundant detection capabilities.
- Research Level Software
The BeNano software can evaluate and process scattered light signals intelligently to improve the signal quality and result stability. Various built-in calculation modes can cover multiple scientific research and application fields.
- Ultra Low Sample Volume Required
Measuring trace amount of sample is required for earlystage R&D in pharmaceutical industy and academia. With the capillary sizing cell, only 3 to 5 μL of sample is needed for precise size measurement.
Model | Technology | Key Function | |||||
90° DLS & SLS | 173° DLS & SLS | 12° ELS & PALS | Particle size | Zeta potential | Molecular weight | Rheological properties | |
BeNano 180 Zeta Pro | √ | √ | √ | √ | √ | √ | √ |
BeNano 180 Zeta | √ | √ | √ | √ | √ | √ | |
BeNano 90 Zeta | √ | √ | √ | √ | √ | √ | |
BeNano Zeta | √ | √ | |||||
BeNano 180 Pro | √ | √ | √ | √ | √ | ||
BeNano 180 | √ | √ | √ | √ | |||
BeNano 90 | √ | √ | √ | √ |
2) Particle Size Measured by Dynamic Light Scattering (DLS)
Dynamic light scattering (DLS), also referred to as photon correlation spectroscopy (PCS) or quasi-elastic light scattering (QELS), is a technique used to measure Brownian motion in a dispersant. It is based on the principle that smaller particles move faster while larger particles move slower. The scattering intensities of the particles are detected by an avalanche photodiode (APD) and then converted into a correlation function using a correlator. From this correlation function, a mathematic algorithm can be applied to obtain the diffusion coefficient (D).
The hydrodynamic diameter (DH) and its distribution can be calculated using the StokesEinstein equation, which relates the diffusion coefficient to the particle size.
3) Backscattering Detection Technology
Features
- Wider Concentration Range
By optimizing the detection position, the highly concentrated samples can be detected near the edge of the sample cell, effectively minimizing the multiple
light scattering effect.
- Higher Sensitivity
8-10 times scattering volume and around 10 times sensitivity as compared to the traditional 90° optical design.
- Higher Size Upper Limit
It mitigates multiple light scattering from large particles and, to some extent, reduces the number fluctuation of large particles due to the much larger
scattering volume.
- Better Reproducibility
The DLS backscattering technology is less influenced by dust contaminants and unevenly distributed agglomerates and provides better reproducibility.
Intelligent Search for the Optimal Detection Position
The software automatically determines the optimal detection position based on the size, concentration, and scattering ability of the sample to achieve the highest measurement accuracy and offer flexibility in detecting different types and concentrations of samples. This feature is particularly useful when dealing with a variety of samples, each with its unique scattering properties and concentrations.
4) Zeta Potential Measured by Electrophoretic Light Scattering (ELS)
In aqueous systems, charged particles are surrounded by counterions that form an inner Stern layer and an outer shear layer. Zeta potential is the electrical potential at the interface of the shear layer. A higher zeta potential indicates greater stability and less aggregation of the suspension system. Electrophoretic light scattering (ELS) measures electrophoretic mobility via Doppler shifts of scattered light, which can be used to determine the zeta potential of a sample by Henry's equation.
5) Phase Analysis Light Scattering (PALS)
Phase analysis light scattering (PALS) is an advanced technology based on the traditional ELS technology, which has been further developed by Bettersize to measure the zeta potential and its distribution of a sample.
Features and Benefits
- Accurate measurement of samples with low electrophoretic mobility
- Effective for samples in organic solvents with low dielectric constant
- More accurate results for samples with high conductivity
- Effectively measures the zeta potential of particles whose charge approaches the isoelectric point
6) Static Light Scattering
Static light scattering (SLS) is a technology that measures the scattering intensities, weight-average molecular weight (Mw), and second virial coefficient (A2) of the sample through the Rayleigh equation:
where c is the sample concentration, θ is the detection angle, Rθ is the Rayleigh ratio used to characterize the intensity ratio between the scattered light and the incident light at angle θ, Mw is the sample’s weight-average molecular weight, A2 is the second virial coefficient, and K is a constant related to (dn/dc)2.
During molecular weight measurements, scattering intensities of the sample at different concentrations are detected. By using the scattering intensity and Rayleigh ratio of a known standard (such as toluene), the Rayleigh ratios of samples at different concentrations are computed and plotted into a Debye plot. The molecular weight and the second virial coefficient are then obtained through the intercept and slope from the linear regression of the Debye plot.
7) Microrheology Measured by DLS
Dynamic Light Scattering Microrheology (DLS Microrheology) is an economical and efficient technique that utilizes dynamic light scattering to determine rheological properties. By analyzing the Brownian motion of colloidal tracer particles, information about the viscoelastic properties of the system, such as viscoelastic modulus, complex viscosity and creep compliance, can be obtained with the generalized Stokes-Einstein equation.
Features & Benefits
- Investigates rheological behaviors by measuring the thermally-driven motion of tracer particles within a material being studied
- Facilitates the measurement across a wide range of frequencies
- Applies low stress to tracer particles
- Requires only a microliter-scale sample volume
- Complements mechanical rheology results
- Suitable for weakly-structured samples
8) Temperature Trend Measurement
Measurement Parameters
- Size vs. Temperature
- Zeta Potential vs. Temperature
Features
- Benefit protein formulation stability study
- Accelerates real-time aging through elevated temperature simulation
Benefits
- Easy examination of protein formulation stability
- Accelerates real-time aging through elevated temperature simulation
9) pH Trend Measurement
Measurement Parameters
- Zeta Potential vs. pH
- Isoelectric point
- Conductivity vs. pH
Features
- High-precision ternary titration pumps
- Controllable peristaltic pump with high flow capacity and high flow rate
- General-purpose electrode
- Automated titrant selection based on initial and target pH using intelligent software
Benefits
- Completes measurements within a shorter time
- Improves consistency and repeatability of results
- Reduces the workload of researchers
- Simplifies qualifications needed for operators
- Accelerates real-time aging through elevated temperature simulation
- Reduces exposure to corrosive liquids
10) A Research Level Software
- SOP guarantees measurement accuracy and completeness
- Automatic calculation of mean and standard deviation for results and statistics
- Comparison of results from multiple runs through statistics and overlay functions
- Real-time display of information and results
- Over 100 available parameters that meet research, QA, QC, and production needs
- Free lifelong upgrades provided
11) Compliance With FDA 21 CFR Part 11
The BeNano software system is compliant with 21 CFR Part 11 regulations, which restricts access to authorized individuals through a username and password system for electronic record signing, access logs, change logs, or operation execution. An activation code can be used to upgrade security settings and ensure compliance, and an "audit trail" can be viewed to ensure proper management and maintenance of system security and data integrity.
Curated Resources
- WhitepaperbigClick
2023-08-14
BeNano Insights: From Pharmaceuticals to Nanomaterials - A Comprehensive Application Note Collection
- Application NotebigClick
2023-07-05
Using BeNano 90 Zeta to measure the particle size and zeta potential of multicolor UV-sensitive resins
- Application NotebigClick
2023-06-25
Determining the Average Zeta Potential and Distribution of Battery Electrode Slurry
Testimonials


BeNano 180 Zeta Pro
The BeNano Series is the latest generation of nanoparticle size and zeta potential analyzers designed by Bettersize Instruments. Dynamic light scattering (DLS), electrophoretic light scattering (ELS), and static light scattering (SLS) are integrated into the system to provide accurate measurements of particle size, zeta potential, and molecular weight. The BeNano Series is widely applied in academic and manufacturing processes of various fields including but not limited to: chemical engineering, pharmaceuticals, food and beverage, inks and pigments, and life science, etc.
Related Particle Size Analyzer
-
Bettersizer S3 Plus
Laser Diffraction Particle Size and Shape Analyzer
0.01 - 3,500μm(Laser System)
2 - 3,500μm(Image System)
-
Bettersizer 2600
Laser Diffraction Particle Size Analyzer
Particle size(wet) : 0.02 - 2,600μm
Particle size(dry) :0.1 - 2,600μm
-
Bettersizer ST
One-stop Particle Size Analyzer
Dispersion type: Wet
Size range: 0.1 - 1,000µm
Repeatability: ≤1% variation
-
BeVision M1
Automated Static Image Analyzer
Dispersion type: Dry & Wet
Size range: 1 - 10,000μm
Technology: Automated Static Image Analysis
-
BeVision S1
Classical and Versatile Static Image Analyzer
Dispersion type: Dry & Wet
Size range: 1 - 3,000μm
Technology: Static Image Analysis