Home > Industries > Chemicals
Chemicals banner

Chemicals

Bettersize instruments are widely used in the study and production control of the particle size, particle shape and powder characteristics of chemicals.

 

In order to develop and optimize the production of chemical materials, a series of the physical properties of chemicals must be monitored, including particle size, particle shape and powder characteristics.

 

Polymers and plastics comprise about the largest sector of the chemical industry's output worldwide. The key products are polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, polystyrene and polycarbonate. Measurement of particle size for these materials plays a very important role during their production and R&D.

 

The major markets for plastics are packaging, followed by home construction, containers, appliances, pipe, transportation, toys, and games.

The largest-volume polymer product, polyethylene (PE), is used mainly in packaging films, milk bottles, containers, and pipes.
Polyvinyl chloride (PVC), another large-volume product, is principally used to make piping for construction markets as well as siding, transportation and packaging materials.
Polypropylene (PP), similar in volume to PVC, is used in markets ranging from packaging, appliances, and containers to clothing and carpeting.
Polystyrene (PS), another large-volume plastic, is used principally for appliances, packaging and especially as a safety feature for in car protection to reduce the consequences of a crash.
The leading man-made fibers include polyester, nylon, polypropylene, and acrylics, with applications including apparel, home furnishings, and other industrial and consumer use.

 

Other chemical products include:
synthetic rubber, surfactants, dyes and pigments, turpentine, resins, carbon black, explosives, and rubber products.
Inorganic chemicals include salt,  caustic soda, soda ash, acids (such as nitric acid, phosphoric acid, and sulfuric acid) and titanium dioxide.
Fertilizers are the smallest category, including phosphates, ammonia, and potash chemicals.

 

Process equipment used to manufacture plastics includes injection molds, compression molds, extruders, and rotational molds. Common to all these processes is that a pellet or powder is used as the starting material. The characteristics of the feed material must meet certain criteria, such as melting point. In addition, chemical composition, flexural strength, compressive strength, impact resistance, density, chemical resistance, and tensile strength give the resulting article its characteristics. The particle size of the pellets contributes significantly to processibility of the polymer. Flowability from the hopper and melting rate when heated, has a direct effect on process speed. Particles (pellets) are generally produced in the range of 200 to 2,000 microns for transport and application.

 

In order to promote the development of the industry , better particle size measurement methods will be needed. So what kind of particle size analysis methods will be better? The Bettersize laser particle analyzer can assist in the development of chemicals in the following aspects:

Measuring the particle size, particle shape, powder characteristics and other properties of materials
Measuring benchmark products to ensure their performance and stability
Controlling quality to ensure compliance with regulatory standards
Developing suitable packaging materials

 

Read more

Citations

  • Bettersizer 2600

    Functional redundancy as an indicator for evaluating functional diversity of macrobenthos under the mussel raft farm near Gouqi Island

    DOI: 10.1016/j.aquaculture.2023.740024 Read Article Go logo
    Zhejiang Ocean University | 2024
    Biological traits analysis (BTA) helps to evaluate the effects of different environmental variables on the traits-based functional composition of macrobenthos. However, research on functional traits of macrobenthos under mussel farming is limited. We investigated the spatial and temporal response of the benthic system in terms of taxonomic and functional diversity to environmental variables of farming and natural stressors resulting from suspended mussel farming near Gouqi Island of eastern China Sea. The functional traits of macrobenthic assemblages under mussel farming were characterized by “medium adult body size”, “vermiform body form”, “high flexibility”, “infauna”, “semi-motile”, “gonochoristic”, “surface deposit-feeders”, “carnivores”, “semi-motile burrowers”, and “tube-dwellers”. Functional redundancy was stable in response to mussel farming stresses among seasons, whereas species diversity showed efficient to evaluate natural variables. Functional diversity was significantly affected by farming stressors rather than natural variables, Further analysis using multivariate methods together with continuous monitoring were highlighted to evaluate the impacts of mussel farming. Our results reinforce the importance of macrobenthic species and functional traits analysis to evaluate human stresses driven impacts in offshore ecosystems. By analysing the environmental variables with different sources, independently, we concluded the main effects of human pressures on macrobenthic community. Such distinction could be particularly effective to isolate variable environmental descriptors and evaluate their effects on functional diversity, making the current approach promising for the evaluation of ecological effects of anthropogenic stressors in aquaculture areas.
  • Bettersizer 2600

    Degradation characteristics and utilization strategies of a covalent bonded resin-based solid amine during capturing CO2 from flue gas

    DOI: 10.1016/j.seppur.2023.125621 Read Article Go logo
    China University of Petroleum | 2024

    In this study, various types of degradation as well as attrition which are possibly encountered in a circulating fluidized bed temperature swing adsorption (CFB-TSA) process, were conducted experimentally to evaluate the stability of a resin-based solid amine sorbent. Other characterizations methods, such as elemental analysis (EA), Fourier transform infrared spectroscopy (FTIR) etc. were applied to further reveal the degradation mechanisms. The results showed that thermal degradation occurs from 140–160 °C due to the decomposition of amine group. The CO2-induced degradation occurs from a higher temperature of 160–180 °C accompanied by the production of urea. Hydrothermal stability is good below 130 °C, but the ionic impurities in steam crystalized on particle surface can accelerate the degradation. Oxidative degradation is the most harmful, which starts at a lower temperature of 70–80 °C with the formation of aldehyde. The existence of H2O in atmosphere can alleviate the oxidative and CO2-induced degradations. The employed sorbent has a very low attrition index of 0.05, which is 1–2 orders lower than typical commercial fluidized bed catalysts. Based on the results of stability evaluation, some design suggestions for proper utilization of this sorbent or other similar resin-based sorbents have been provided in an industrial CFB-TSA process.

  • Bettersizer 2600

    De-branching of starch molecules enhanced the complexation with chitosan and its potential utilization for delivering hydrophobic compounds

    DOI: 10.1016/j.foodhyd.2023.109498 Read Article Go logo
    Shihezi University | 2024
    The current study aimed to prepare the complexes between debranched-waxy corn starch and chitosan polymers (DBS-CS), and then investigated their corresponding structural characteristics, rheological property and potent application in Pickering emulsion. The results indicated that the existence of chitosan significantly inhibited starch short-range molecular rearrangement for all DBS-CS samples, which was manipulated by both debranching treatment and chitosan content. Interestingly, this is the first study to reveal that the outstanding peak at 1.8 ppm in 1H NMR spectrum for sample DBS-CS was gradually shifted towards a lower-field region following an increased chitosan content. Moreover, the debranching treatment shifted the crystallinity pattern from A-type to B-type and the relative crystallinity of DBS-CS decreased gradually with the increased content of CS. All samples had a pseudoplastic fluid and shear-thinning behavior with an enhanced shear resistance following the complexation. The DBS-CS was applied in a Pickering emulsion for showing a greater emulsifying stability and a lower gel strength than native NS-CS prepared emulsion. Importantly, the encapsulation ability of curcumin in the DBS-CS emulsion was significantly improved, followed by an increase of 15.45% for its corresponding bioavailability compared to the control. Therefore, this study might highlight a potential carrier for delivering the bioactive substances in a green pattern.
  • Bettersizer 2600

    Heat-induced aggregation behavior of wheat gluten after adding citrus pectin with different esterification degree

    DOI: 10.1016/j.foodhyd.2023.109420 Read Article Go logo
    Gansu Agricultural University | 2024
    Wheat gluten aggregation during heat treatment is beneficial to the final quality of gluten-based products. Exogenous pectin can affect gluten aggregation. However, the effect of pectin with different degrees of esterification on the heat-induced aggregation behavior of gluten and its possible mechanism are still unclear. Thus, the heat-induced aggregation behavior of gluten after adding pectin with different esterification degree was studied in this study. When the temperature was raised from 25 °C to 95 °C, pectin affected gluten aggregation and was related to the degree of esterification. Specifically, the results of rheological properties and particle size indicated that low-ester pectin improved the viscoelasticity of gluten and promoted gluten aggregation. Thermal properties revealed that enthalpy of gluten added with low-ester pectin (37%) increased from 92.96 J/g to 95.40 J/g during heating process. Structurally, the fluorescence intensity and surface hydrophobicity of gluten added with low-ester pectin (37%) were lower than those added with high-ester pectin (73%). In addition, low-ester pectin (37%) significantly increased the disulfide bond content (from 15.31 μmol/g to 18.06 μmol/g) and maintained β-sheet content of gluten compared with gluten alone at 95 °C, indicating that low-ester pectin was more likely to induce gluten aggregation. However, scanning electron microscope showed that the gluten added with low-ester pectin (46%) exhibited a denser network structure at 95 °C than that added with low-ester pectin (37%). These results will provide a theoretical base for the regulation of gluten aggregation and the quality of gluten-based products by pectin with different esterification degree.
Page 1 of 84
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 84
Go to

Curated Resources

  • Application Note
    Using the BAT-1 autotitrator to measure the zeta potentials of Al2O3 at different pH

    2023-06-08

    Using the BAT-1 autotitrator to measure the zeta potentials of Al2O3 at different pH

    bigClick
  • Application Note
    Using the BAT-1 autotitrator to measure the zeta potentials of TiO2 at different pH

    2023-06-02

    Using the BAT-1 autotitrator to measure the zeta potentials of TiO2 at different pH

    bigClick
  • Application Note
    Copolymer Latex particle Size and Zeta Potential analysis

    2022-01-12

    Measuring the Sizes and Zeta Potentials of Copolymer Latex Samples

    bigClick

More resources

Related Particle Size Analyzer

  • BeNano 180 Zeta Pro

    BeNano 180 Zeta Pro

    Nanoparticle Size and Zeta Potential Analyzer

    Technology: Dynamic Light Scattering, Electrophoretic Light Scattering, Static Light Scattering

  • Bettersizer 2600

    Bettersizer 2600

    Laser Diffraction Particle Size Analyzer

    Measurement range: 0.02 - 2,600μm (Wet dispersion)

    Measurement range: 0.1 - 2,600μm (Dry dispersion)

    Measurement range: 2 - 3,500μm (Dynamic imaging)

  • BeVision D2

    BeVision D2

    Dynamic Image Analyzer

    Dispersion type: Dry

    Measurement range: 30 - 10,000μm

    Technology: Dynamic Image Analysis

  • BeDensi T Pro Series

    BeDensi T Pro Series

    Tapped Density Tester with a Wallet-Friendly Solution

    Number of Workstations: 1-3

    Tapping Speed: 100 - 300 taps/min

    Repeatability: ≤1% variation

  • PowderPro A1

    Automatic Powder Characteristics Tester

    Operation Mode: Automatic

    Tapping Speed: 50 - 300 taps/min

    Repeatability: ≤3% variation

  • BT-Online1 online particle size analyzer for dry powder

    BT-Online1

    Online Particle Size Analyzer

    Dispersion type: Dry

    Measurement range: 0.1 - 1,000μm

    Accuracy: ≤1% (D50 of certified reference material)

  • BeDensi B1 Bulk Density Tester

    BeDensi B1

    Bulk Density Tester

    Measurement: Bulk Density

    Compliance with GB/T 16913

  • BeDensi-B1-S-Scott-Volumeter

    BeDensi B1-S

    Scott Volumeter

    Measurement: Bulk Density

    Compliance with USP, Ph. Eur., ASTM, and ISO standards