BeScan Lab
The BeScan Lab is a versatile, sensitive, and reliable stability analyzer utilizing Static Multiple Light Scattering (SMLS) technology. It is widely employed in formulation development and product quality control. This analyzer can handle a broad range of sample concentrations (up to 95% v/v) and various types such as emulsions, suspensions, and foams, with temperature scanning capabilities up to 80°C. BeScan Lab offers both qualitative analysis and quantitative detection of destabilization, aiding in achieving long-term product stability and optimal shelf life.
Features and Benefits
- ● Real stability analysis for dispersions with volume fraction up to 95%.
- ● Particle size ranges from 10 nm to 1 mm.
- ● Non-destructive testing: non-contact, non-diluting, and non-shearing.
- ● Data acquisition with a resolution of 20 μm enables quicker observation of sample stability than with the naked eye.
- ● Precise temperature control up to 80°C to accelerate unstable phenomena.
- ● Identification of various unstable phenomena: creaming, sedimentation, flocculation, coalescence, and breaking.
- ● Quantification of destabilizations and study of mechanisms.
Video
Overview of BeScan Lab | Stability Analyzer
Overview
Measurement Principle
Static Multiple Light Scattering (SMLS) is employed to characterize the stability of dispersions. Within BeScan Lab, a setup comprising two detectors and an LED light source ascends along the sample cell to conduct sample scanning. In the case of concentrated samples, the backward detector is employed to detect backscattered signals, while for diluted samples, the forward detector is utilized to detect transmitted signals.
The sample will undergo scanning every 20 μm vertically to capture changes in transmitted and backscattered signals, indicating destabilization. Following each scan, an instability index (IUS) can be computed. Short-term or Long-term stability can then be assessed based on the trend of IUS.
Mean particle size measurement can be implemented by analyzing transmission, backscattering, or particle migration rate. Investigation of particle size facilitates the research on unstable phenomena.
Applications
Petrochemicals, Pharmaceuticals, Agrochemicals, Food & Beverages, Chemicals, Paints, Inks & Coatings, Ceramics, Battery & Energy
Curated Resources
- Flyer
Related Instruments
-
BetterPyc 380
Gas Pycnometer
Technology: Gas Displacement Method
Temperature Range: 10 - 65 ℃
Resolution: 0.0001 g/cm³
-
BeNano 180 Zeta Pro
Nanoparticle Size and Zeta Potential Analyzer
Technology: Dynamic Light Scattering, Electrophoretic Light Scattering, Static Light Scattering
-
Bettersizer S3 Plus
Particle Size and Shape Analyzer
Measurement range: 0.01 - 3,500μm (Laser System)
Measurement range: 2 - 3,500μm (Image System)
-
Bettersizer 2600
Laser Diffraction Particle Size Analyzer
Measurement range: 0.02 - 2,600μm (Wet dispersion)
Measurement range: 0.1 - 2,600μm (Dry dispersion)
Measurement range: 2 - 3,500μm (dynamic imaging)
-
Bettersizer ST
One-stop Particle Size Analyzer
Dispersion type: Wet
Measurement range: 0.1 - 1,000µm
Repeatability: ≤1% variation